Section Solutions 3

Problem One: CHeMoWIZrDy

```
bool isElementSpellable(string text, Lexicon& symbols) {
    /* Base case: If there is no text at all, it can be spelled with no
        * element symbols at all.
        */
    if (text == "") return true;
    /* Recursive step: See if there is some prefix of the text that can
    * be removed that happens to be an element symbol. This code uses
    * the fact that all element symbols are at most three characters
    * long.
    */
    for (int i = 1; i <= text.length() && i <= 3; i++) {
        if (symbols.contains(text.substr(0, i)) &&
                isElementSpellable(text.substr(i), symbols)) {
                return true;
        }
    }
    /* If no option works, then the text is not element-spellable. */
    return false;
}
```


Problem Two: Big-O Notation

Below is a simple function that computes the value of m^{n} when n is a nonnegative integer:

```
int raiseToPower(int m, int n) {
    int result = 1;
    for (int i = 0; i < n; i++) {
        result *= m;
    }
    return result;
}
```

i. What is the big-O complexity of the above function, written in terms of m and n ? You can assume that it takes the same amount of time to multiply together any two numbers.

The function has complexity $O(n)$. To see this, note that the inner loop runs exactly n times, each doing a constant amount of work. Therefore, the overall complexity is $O(n)$. This means that there is no dependence on m.
ii. If it takes 1μ s to compute raiseToPower (100,200), about how long will it take to compute raiseToPower (50,400)? Why can't you give an exact value for the runtime?
Since \boldsymbol{n} has doubled from 200 to 400 and the time complexity is $O(n)$, the new runtime should be about twice the runtime as before, so it should take about $2 \mu \mathrm{~s}$.

We can't give an exact value for the runtime because big-O notation ignores lower-order growth terms. These other terms can contribute to the runtime as well for small values of n, and might influence the overall runtime.

Below is a recursive function that computes the value of m^{n} when n is a nonnegative integer:

```
int raiseToPower(int m, int n) {
    if (n == 0) return 1;
    return m * raiseToPower(m, n - 1);
}
```

iii. What is the big-O complexity of the above function, written in terms of m and n ? You can assume that it takes the same amount of time to multiply together any two numbers.
The runtime is $O(n)$. To see this, note that

- raiseToPower (m, n) does $\mathbf{O}(1)$ work, then calls raiseToPower $(m, n-1)$.
- raiseToPower $(m, n-1)$ does $\mathbf{O}(1)$ work, then calls raiseToPower $(m, n-2)$.
- ...
- raiseToPower $(m, 1)$ does $\mathbf{O}(\mathbf{1})$ work, then calls raiseToPower $(\boldsymbol{m}, \mathbf{0})$.
- raiseToPower $(m, 0)$ does $O(1)$ work.

This means that there are a total of $n+1$ calls, each of which does $O(1)$ work. Therefore, the total work done is $O(n)$.
iv. If it takes $1 \mu \mathrm{~s}$ to compute raiseToPower (100,200), about how long will it take to compute raiseToPower (50, 400)?

As before, the runtime will be around 2μ s.

It turns out that there is a much faster way to compute m^{n} when n is a nonnegative integer. The idea is to modify the recursive step as follows.

- If n is an even number, then we can write as $n=2 k$. Then $m^{n}=m^{2 k}=\left(m^{k}\right)^{2}$
- If n is an odd number, then we can write $n=2 k+1$. Then $m^{n}=m^{2 k+1}=m \cdot\left(m^{2 k}\right)=m \cdot\left(m^{k}\right)^{2}$ Based on this observation, we can write this recursive function:

```
int raiseToPower(int m, int n) {
    if (n == 0) return 1;
    if (n % 2 == 0) {
        int z = raiseToPower(m, n / 2);
        return z * z;
    } else {
        int z = raiseToPower(m, n / 2);
        return m * z * z;
    }
}
```

v. What is the big-O complexity of the above function, written in terms of m and n ? You can assume that it takes the same amount of time to multiply together any two numbers.

The time complexity is $\mathbf{O}(\log n)$. Note that at each level of the recurrence, n 's value goes down by a factor of two. This means that the maximum number of recursive calls can be at most $O(\log n)$, since at that point n will have shrunk down to 0 (since we always round down). Each level does only $O(1)$ work, so the total runtime is $O(\log n)$.
vi. If it takes 1μ s to compute raiseToPower (100,100), about how long will it take to compute raiseToPower (50, 10000)?
Note that $\log 10000=\log 100^{2}=2 \log 100$. Therefore, we would expect the second call to raiseToPower to take about twice as long as before, giving a runtime of 2μ s.
vii. (Challenge problem, if you have the time) What happens to the big-O time complexity if you rewrite the function in the following way?

```
int raiseToPower(int m, int n) {
    if (n == 0) return 1;
    if (n % 2 == 0) {
        return raiseToPower(m, n / 2) * raiseToPower(m, n / 2);
    } else {
        return m * raiseToPower(m, n / 2) * raiseToPower(m, n / 2);
    }
}
```

Notice that this function makes two recursive calls at each level. This means that

- There is one recursive call with \boldsymbol{n} at its initial value.
- There are two recursive calls with \boldsymbol{n} around $\boldsymbol{n} / 2$.
- There are four recursive calls with n around $n / 4$.
- There are eight recursive calls with n around $n / 8$.
- There are 2^{k} recursive calls with n around $n / 2^{k}$.

Eventually, this process stops when $k>\log _{2} n$. When that happens, the bottom layer will have a total of around n total recursive calls (since $2^{k}>2^{\log n}=n$). Each recursive call does a total of $O(1)$ work, so the total amount of work done is equal to the total number of recursive calls, which is

$$
1+2+4+8+\ldots+2^{\log n}
$$

This is the sum of a geometric series. It turns out that this is equal to

$$
2^{1+\log n}-1=2 \cdot 2^{\log n}-1=2 n-1
$$

So the total runtime is $\mathbf{O}(n)$.

